Distribusi Chi2 dengan satu derajat kebebasan
Ini adalah distribusi X^2, jika variabel acak X mengikuti distribusi gaussian standar.
curve(dchisq(x,1), xlim=c(0,5), col='red', lwd=3) abline(h=0,lty=3) abline(v=0,lty=3) title(main="Chi2, one degree of freedom")
curve(dchisq(x,1), xlim=c(0,10), ylim=c(0,.6), col='red', lwd=3) curve(dchisq(x,2), add=T, col='green', lwd=3) curve(dchisq(x,3), add=T, col='blue', lwd=3) curve(dchisq(x,5), add=T, col='orange', lwd=3) abline(h=0,lty=3) abline(v=0,lty=3) legend(par('usr')[2], par('usr')[4], xjust=1, c('df=1', 'df=2', 'df=3', 'df=5'), lwd=3, lty=1, col=c('red', 'green', 'blue', 'orange') ) title(main='Chi^2 Distributions')
X1 + X2 + ... + Xn -------------------- - mu n ----------------------------- sigma --------- sqrt(n)
Mengikuti hukum gaussian. Tetapi jika kita mengganti simpangan baku dengan simpangan baku sampel (yaitu, penaksir simpangan baku populasi), besaran ini tidak lagi mengikuti distribusi gaussian tetapi distribusi Student T dengan (n-1) derajat kebebasan.
curve( dt(x,1), xlim=c(-3,3), ylim=c(0,.4), col='red', lwd=2 ) curve( dt(x,2), add=T, col='blue', lwd=2 ) curve( dt(x,5), add=T, col='green', lwd=2 ) curve( dt(x,10), add=T, col='orange', lwd=2 ) curve( dnorm(x), add=T, lwd=3, lty=3 ) title(main="Student T distributions") legend(par('usr')[2], par('usr')[4], xjust=1, c('df=1', 'df=2', 'df=5', 'df=10', 'Gaussian distribution'), lwd=c(2,2,2,2,2), lty=c(1,1,1,1,3), col=c('red', 'blue', 'green', 'orange', par("fg")))
X1^2 + X2^2 + ... + Xn^2 -------------------------- n ---------------------------- Y1^2 + Y2^2 + ... + Ym^2 -------------------------- m
mengikuti distribusi F, dengan n dan m derajat kebebasan. Ini adalah distribusi hasil bagi variabel Chi2 independen, masing-masing dibagi dengan derajat kebebasannya.
Kami akan memenuhi distribusi ini ketika kami membandingkan varians (misalnya, dalam Anova (Analysis Of VAriance) atau dalam uji statistik).
curve(df(x,1,1), xlim=c(0,2), ylim=c(0,.8), lty=2) curve(df(x,3,1), add=T) curve(df(x,6,1), add=T, lwd=3) curve(df(x,3,3), add=T, col='red') curve(df(x,6,3), add=T, lwd=3, col='red') curve(df(x,3,6), add=T, col='blue') curve(df(x,6,6), add=T, lwd=3, col='blue') title(main="Fisher's F") legend(par('usr')[2], par('usr')[4], xjust=1, c('df=(1,1)', 'df=(3,1)', 'df=(6,1)', 'df=(3,3)', 'df=(6,3)', 'df=(3,6)', 'df=(6,6)'), lwd=c(1,1,3,1,3,1,3), lty=c(2,1,1,1,1,1,1), col=c(par("fg"), par("fg"), par("fg"), 'red', 'red', 'blue', 'blue'))
curve(dlnorm(x), xlim=c(-.2,5), lwd=3, main="Log-normal distribution")
N <- 100 # Number of arrows alpha <- runif(N, -pi/2, pi/2) # Direction of the arrow x <- tan(alpha) # Arrow impact plot.new() plot.window(xlim=c(-5, 5), ylim=c(-1.1, 2)) segments( 0, -1, # Position of the Bowman x, 0 ) # Impact d <- density(x) lines(d$x, 5*d$y, col="red", lwd=3 ) box() abline(h=0) title(main="The bowman's distribution (Cauchy)") # Exercise: turn this into an animation...
N <- 10000 x <- tan(runif(N, -pi/2, pi/2)) xlim <- qcauchy(2/N) xlim <- c(xlim, -xlim) plot(qcauchy(ppoints(N)), sort(x), xlim=xlim, ylim=xlim, main="The bowman's distribution and Cauchy's")
Ini juga merupakan kasus pembatas dari distribusi Student T, dengan 1 derajat kebebasan.
curve(dcauchy(x),xlim=c(-5,5), ylim=c(0,.5), lwd=3) curve(dnorm(x), add=T, col='red', lty=2) legend(par('usr')[2], par('usr')[4], xjust=1, c('Cauchy distribution', 'Gaussian distribution'), lwd=c(3,1), lty=c(1,2), col=c(par("fg"), 'red'))
No comments: